北極域における大気ポテンシャル酸素と大気海洋間酸素フラックスの船舶観測

石戸谷重之¹、内田裕²、笹野大輔³、小杉如央³、田口彰一¹、亀山宗彦⁴、石井雅男³、森本真司⁵、遠嶋康徳⁶、 西野茂人²、村山昌平¹、青木周司⁵、石島健太郎²、藤田遼⁵、後藤大輔⁷、中澤高清⁵ ¹産業技術総合研究所、²海洋研究開発機構、³気象研究所、⁴北海道大学、⁵東北大学、 ⁶国立環境研究所、⁷国立極地研究所

Shipboard Observations of Atmospheric Potential Oxygen and air-sea O₂ flux in the northern North Pacific and the Arctic Ocean

Shigeyuki Ishidoya¹, Hiroshi Uchida², Daisuke Sasano³, Naohiro Kosugi³, Shoichi Taguchi¹, Sohiko Kameyama⁴, Masao Ishii³, Shinji Morimoto⁵, Yasunori Tohjima⁶, Shigeto Nishino², Shohei Murayama¹, Shuji Aoki⁵, Kentaro Ishijima², Ryo Fujita⁵, Daisuke Goto⁷ and Takakiyo Nakazawa⁵

¹Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan,

²Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan,

³Meteorological Research Institute, Tsukuba 305-0052, Japan,

⁴Hokkaido University, Sapporo 060-0810, Japan,

⁵Tohoku University, Sendai 980-8578, Japan,

⁶National Institute for Environmental Studies, Tsukuba 305-8506, Japan,

⁷National Institute of Polar Research, Tachikawa 190-8518, Japan.

Simultaneous observations of Atmospheric Potential Oxygen (APO = O_2 +1.1xCO₂) and air-sea O_2 flux were carried out onboard a research vessel MIRAI in the northern North Pacific and the Arctic Ocean in the autumns of 2012-2015. Air samples to measure the atmospheric $\delta(O_2/N_2)$ and CO_2 concentration to derive APO were collected on average once per day for the period September 5 - October 15, 2012, August 29 - October 6, 2013, September 1 - October 9, 2014 and August 27 -October 5, 2015. Dissolved oxygen concentration in the near-surface water was also measured continuously during these cruises, and converted to air-sea O_2 flux (F_{O2_obs}). The relationships of $\delta(O_2/N_2)$ and simultaneously-measured $\delta^{13}C$ with CO_2 concentration indicated that terrestrial biospheric activities and the air-sea O_2 flux are the main contributors to the observed variations in CO₂ concentration and APO, respectively. To compare the observed APO values with those simulated using the monthly air-sea O₂ flux climatology taken from the TransCom experimental protocol (F_{O2} cli), a simulation of APO using a 3dimensional atmospheric transport model forced by F_{02_cli} was also carried out. The observed APO showed larger short-term variations than the simulated APO, and F_{O2_obs} also showed larger variation than F_{O2_cli}. A simple calculation indicated that the short-term variations in APO produced by using F_{O2_obs} were comparable in magnitude to the observed, and the characteristics of the temporal variations in the observed APO were relatively well reproduced by the calculated APO. These results strongly suggest that the short-term variations seen in the observed APO is attributable to the short-term variations in the air-sea O_2 flux around the observation area. The F_{O2_obs} values were systematically higher than the F_{O2_cli} values in all cruises, with an average difference of about 0.3 μ molm⁻²s⁻¹. By uniformly mixing the sea-to-air O₂ flux of 0.3 μ molm⁻²s⁻¹ from the northern hemisphere ocean into the overlying atmosphere during the fall season, it was possible to explain the discrepancy between the observed and simulated seasonal APO cycles seen at Ny-Ålesund, Svalbard and Sendai, Japan in the fall season. These findings show that simultaneous ship observations of APO and $F_{O2 obs}$ are useful to validate regional air-sea O_2 fluxes in detail (Ishidoya et al., submitted).

Acknowledgements

We thank the captain, crew, and technical staffs of R/V MIRAI for their hard work in collecting the data and samples. We also thank J. Matsushita and K. Katsumata (National Institute for Environmental Studies) for their support to collect the data and samples.

References

Ishidoya, S. et al., Ship observations of atmospheric potential oxygen and regional air-sea O_2 flux in the Northern North Pacific and the Arctic Ocean, submitted to *Tellus B*.