南極海の酸性化が植物プランクトンに及ぼす影響

服部寬¹、三島翼¹、遠藤寿²、本川正三³、飯田高大⁴、橋田元⁴、鈴木光次²、西岡純²、田口哲³、佐々木洋⁵ ¹ 東海大学、2 北海道大学、3 創価大学、4 極地研究所、5 石巻専修大学

Effects of Southern Ocean acidification on phytoplankton

Hiroshi Hattori¹, Tsubasa Mishima¹, Hisashi Endo², Shozo Motokawa³, Takahiro Iida⁴, Gen Hashida⁴, Koji Suzuki², Jun Nishioka², Satoru Taguchi³ and Hiroshi Sasak⁵

1:Tokai University, 2:Hokkaido University, 3:Soka University, 4:NIPR, 5: Senshu University of Ishinomaki

Southern Ocean is one of high biological productive areas in the whole ocean because large amount of primary production is successively occurred in the seasonal sea-ice zone. Predicted acidification in the seawater would affect on the marine food web particularly on the phytoplankton such as diatoms and haptophytes. In the present study, samplings were carried out along 110 °E and 140°E in the Indian Sector of the Southern Ocean to represent the diatoms biomass and to estimate the acidification effects on the phytoplankton communities during the T/V Umitaka-maru cruise in Austral summer of 2011/2012. This study is made as a part of the 53th Japanese Antarctic Research Expedition (JARE-53). Ocean acidification experiment was carried out 4 times during the cruise. Phytoplankton collected by a clean pump method at 45°S (Stn C02) and 60° S (Stn C07) of 110°E and 50°S (Stn D13) and 64° S(Stn D07) of 140°E were replaced in around 750 µatm of *p*CO₂ water to compare the non-acidified natural condition (Fig. 1). Each experiment was done for three days.

About cell density of diatoms, Stn C02 is not presented in this report because density of this station is low $(0.04 \times 10^3 \text{ cellsL}^{-1})$. The Initial densities of *Fragilariopsis kerguelensis* and *Thalassiosira oestrupii* and the other diatoms at Stn C07 were reaching to $3.94 \times 10^3 \text{ cellsL}^{-1}$ (39%), $2.22 \times 10^3 \text{ cellsL}^{-1}$ (22%) and $3.66 \times 10^3 \text{ cellsL}^{-1}$ (39%), respectively. At Stn D07, the Initial densities of *F. kerguelensis* and *Chaetoceros* sp. and the other diatoms were $0.18 \times 10^3 \text{ cellsL}^{-1}$ (18%), $0.48 \times 10^3 \text{ cellsL}^{-1}$ (44%) and $0.44 \times 10^3 \text{ cellsL}^{-1}$ (40%), respectively. At Stn D13, the Initial densities of *F. kerguelensis* and *T. oestrupii* and the other diatoms were $1.64 \times 10^3 \text{ cellsL}^{-1}$ (71%), $0.34 \times 10^3 \text{ cellsL}^{-1}$ (15%) and $0.34 \times 10^3 \text{ cellsL}^{-1}$ (15%), respectively. After the three days experiments (Table 1), in comparing to the Control, cell densities of major diatoms in the Fe enriched condition (+Fe) were increased 436% for *F. kerguelensis* and 695% for *T. oestrupii* at Stn C07 and 296% for *F. kerguelensis* and 438% for *Chaetoceros* sp. at Stn D07 as well as 330% for *F. kerguelensis* and 226% for *T. oestrupii* at Stn D13. On the other hand, cell density of diatoms in the Fe enriched with high CO₂ water (+Fe+CO₂) in comparing to the Fe enriched (+Fe), *F. kerguelensis* and *T. oestrupii* decreased to 5% and 67%, respectively at Stn C07. In case of Stn D07, only *F. kerguelensis* increased to 125% whereas *Chaetoceros* sp. reduced to 81%. *F. kerguelensis* and *T. oestrupii* were declined to 63% and 43% at Stn D13.

Standing stocks of haptophytes (Initial), Phaeocystis antarctica and coccolithopholids mainly composed of Emiliania huxleyi Type B/C, were abundant in the northern stations of C02 (45°S) representing 62.7 x10³ cellsL⁻¹ (93.6%) and 3.4 x10³ cellsL⁻¹ (6.4%), respectively. The initial densities of P. antarctica and E. huxleyi (other coccolithopholid species did not appear) at south-eastern station of D13 (59°S) were reaching around 110.2 x10³ cellsL⁻¹ (81.2%) and 25.5 x10³ cellsL⁻¹ (18.8%), respectively. At Stn. C02, after closing the incubation experiments, control densities of P. antarctica decreased to 90% of the initial whereas 676% increase in E. huxleyi and 5,577% rise in Calcidicus leptoporus (Table 1, lower). In this station, density rises were conspicuous at the Fe enriched incubation showing 154%, 1,170%, and 5,889% increase in P. antarctica, E. huxleyi and C. leptoporus to those of the initial concentrations, respectively. Under the Fe enriched condition, once these three species were put in the high CO2 condition, relative densities to the initial were lowre or similar levels of the initials. Higher declines were obtained between Fe-enriched with or without high CO₂ on P. Antarctica, E. huxleyi and C. leptopolus dropping to 51%, 0.1% and 71% of the Fe enriched concentration, respectively. At Stn. D13, densities of P. antarctica and E. huxleyi in the control increased 167% and 109% of the initial, respectively. In the Fe enriched bottle, P. antarctica highly multiplied to 388% and E. huxleyi grew 256% of the initial. On the other hand, concentrations of P. antarctica and E. huxleyi at the Fe enriched with high CO₂ bottle were not increase as much as 115% and 65% to the initial, respectively. Compering the haptophyte densities in the Fe enriched with/without high CO₂, P. antarctica and E. huxleyi decrease to 1/2.0 and 1/1473 at Stn. C02 as well as 1/3.4 and 1/3.9 at Stn. D13. This reveals that haptophytes particularly E. huxleyi are highly affected by the ocean acidification for their growth other than C. leptoporus, which showed positive effect on it density representing 1.4 times higher density in the high CO₂ bottle at Stn. CO2. Effects of the acidification on haptophytes may surly represent on the thinner cells than on the thicker cells. Concentrations of P. antarctica and E. huxleyi were almost same in the initial and the Fe enriched with high CO₂ bottles, as mentioned before. This also means that acidified water may disturb and/or sabotage their production.

These results reveal that many diatom and haptophyte species were affected by the ocean acidification under the Fe enrich conditions. However, negative biological effects of acidified water was less obvious in the diatom (43%) species comparing to the small haptophytes (50%) such as coccolithopholids (Table 1).

Figur 1. Incubation diagram of ocean acidification experiment

Tuble 1. Relative changes in centrative and relative and	Table 1. Relative changes	s in cell densities to the Initial (%, A, B, C, D), estimated CO ₂ effects	and relative daily	y loss rete (%
---	---------------------------	--------------------------------------	---------------	--------------------------------------	--------------------	----------------

						Relative daily loss rate
	Initial	controle	+Fe	+Fe+CO2	CO_2 effect (%)	in the present cell density (%)
	А	В	С	D	D/C	((D-C)-(B-A))/A/Day
Fragilariopsis kerguelensis-D13	1.00	1.15	3.33	2.09	62.81	-0.42
Fragilariopsis kerguelensis-C07	1.00	1.21	4.36	0.20	4.65	-0.70
Fragilariopsis kerguelensis-D07	1.00	1.33	2.96	3.71	125.14	0.10
Thalassiosira oestrupii-D13	1.00	0.76	2.26	0.98	43.42	-0.42
Thalassiosira oestrupii-C07	1.00	2.49	6.95	4.67	67.17	-1.03
Chaetoceros sp-C07	1.00	1.13	7.50	5.00	66.67	11.61
Chaetoceros sp-D07	1.00	2.54	4.38	3.54	80.95	-0.60
Diatom total					43.05	
Phaeocystis antarctica-C02	1.00	0.90	1.54	0.78	50.81	-0.23
Phaeocystis antarctica-D13	1.00	1.67	3.88	1.15	29.69	-1.02
Phaeocystis antarctica-C07	1.00	1.09	1.83	1.21	66.03	-0.20
Phaeocystis antarctica-D07	1.00	1.03	2.20	1.44	65.51	-0.20
Emiliania huxleyi-C02	1.00	6.76	11.70	0.01	0.07	-6.12
Emiliania huxleyi-D13	1.00	1.09	2.56	0.65	25.50	-0.60
Emiliania huxleyi-C07	1.00	16.80	179.95	128.30	71.30	-18.48
Calcidiscus leptoporus-C02	1.00	55.77	58.89	42.10	71.48	-25.11
Haptophyte total					50.4	