

Progress Report on Debriefing Section 2020-2021

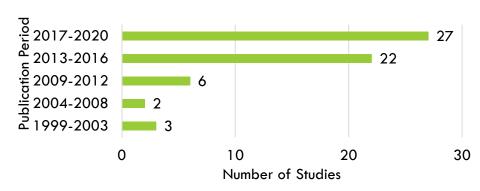
Chathumi Ayanthi Kavirathna Postdoctoral Researcher Shibasaki Lab The University of Tokyo 22nd March, 2021

AGENDA

- Progress: Part 1
- Progress: Part 2
- Related Publications
- Future Works
- References

Progress: Part 1

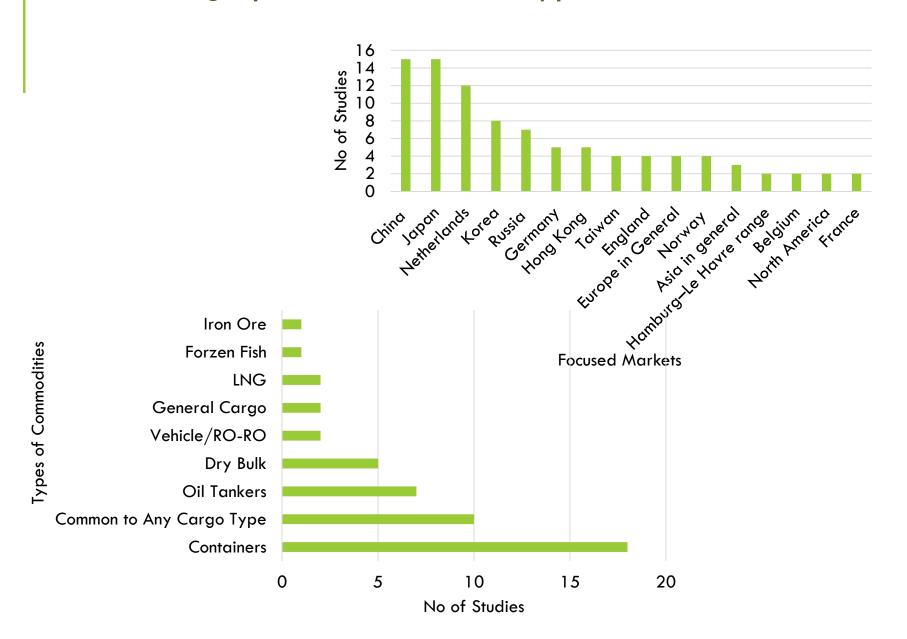
Economic Feasibility of Arctic Shipping from Multiple Perspectives

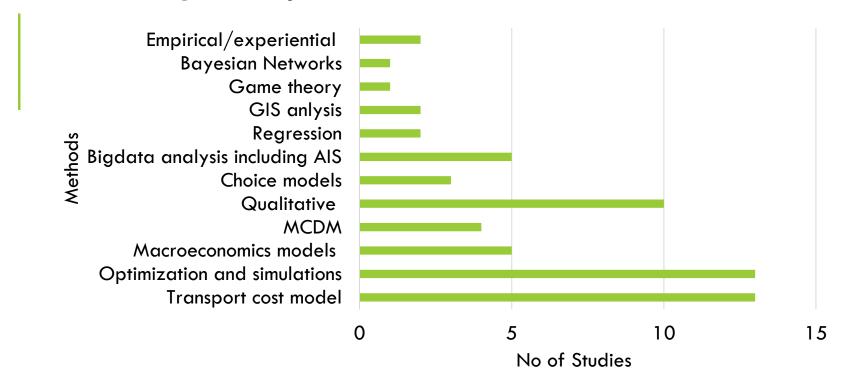

Research Objectives:

Provide a better understanding of the economic feasibility of Arctic shipping by summarizing previous studies that focused multiple perspectives

Research Method: Systematic Review

60 studies


- 57 from international journals
- 2 from refereed international conferences
- 1 from research organization


Classification of Studies

1.Environmental and climate concerns (7) 2. Cost comparison of Arctic 11. Russian Policy on Arctic and other routes (8) Shipping (6) 3. Feasibility of NSR/SCR 10. Engineering aspects of Arctic shipping(11) combined service (4) Arctic 9. Effects of Arctic shipping 4. Route choice between Arctic Shipping on other economics (4) and other routes (5) 8. Operational aspects of 5. Required freight rate on Arctic shipping (8) Arctic routes (2) 6. Navigation speed on 7. Criteria for choosing Arctic routes (3) Arctic shipping (2)

Focused Geographical Markets and Types of Commodities

Methodological Aspects

Factors Considered in Model Developments

Factors Considered	No of Studies
Voyage cost, fuel cost, fuel	19
consumption rates	17
Capital cost, depreciation cost	1 <i>7</i>
Transit fee, ice-breaking fee, canal toll	16
Insurance	12
Crew cost	12
Maintenance cost	11
Operating cost in general	10

Factors Considered	No of Studies
Port charges	8
Ice condition, ice thickness	5
Carbon tax, emission	4
Load factor	3
Delays and waiting time	2
Port time	2
Exchange rates	1

Vessel Size and Types Used by Studies

Study	Size	Туре
Cariou and Faury (2015)	40,000 DWT Handymax	1A (IAS)
Theocharis et al. (2019)	Suezmax, Aframax, Panamax, Handymax	1 A (Arc4) ice class
Ding et al. (2020)	9 ship sizes between 5089 - 21237 TEUs	ice-class
Erikstad and Ehlers (2012)	N.A.	Non-ice-class to 1AS ice class
Faury and Cariou (2016)	Panamax oil tanker	1A
Furuichi and Otsuka (2014)	6,500 CEU car carrier, 4,000 TEUs	Ice class
Ha and Seo (2014)	650, 4300, 5000, 8000 TEUs	DAS
Konygin et al. (2015)	70 000 t DWT tanker	Arc 6
Lasserre (2014)	4500 TEU	1AS
Lindstad et al. (2016)	Dry bulk (Panamax and Capesize)	N.A.
Liu and Kronbak (2010) Wang et al. (2018)	4300 TEU	Ice class 1B
Otsuka et al. (2013)	75,000 dwt (bulk), 147,500 m3 (LNG), 12,383GT (reefer)	Ice-class IA
Pruyn (2016)	11 ship sizes between 17,800- 289,400 DWT	ice-class 0, 1, 2, with given specifications, regular vessel with ice breaker
Shibasaki et al. (2018)	147,500 m3, 172,000 m3, LNG carrier	Arc 4, Arc 7
Somanathan et al. (2009)	N.A.	CAC3
Solakivi et al. (2019)	7 ship sizes between 500–700 TEU, 10,000–12,000 TEU	IA and IAS Ice Class (FSCIR)
Stephenson et al. (2013)	N.A.	PC3, PC6, open-water vessels with high, medium, and no ice-breaking capability
Xu et al. (2011)	10,000 TEU	non-ice class
Xu et al. (2018)	8000, 10 000, 12 000, 14 000 and 16 000 TEUs	ice-class 1A (Finnish-Swedish) or ARC4 (Russian)
Yumashev et al. (2017)	> or < 2500 TEU, > or < 50,000 DWT (bulk)	ice-strengthened vessels in the future
Zhang et al. (2016)	Panamax, Aframax	Arc 4
Zhao et al. (2016)	4800 TEU	ice-strengthened ship

Navigation Speed at Arctic Vs Other Routes

Study	Arctic Routes	Other Routes
Lasserre (2014)	14 knots for NSR and 13 knots in NWP for the whole summer	20 knots SCR
Ding et al (2020)	17.73 knots in blue water and 12.00 knots in ice	16.47 knots
Wang et al (2018)	>25 knots in open water and <10 knots in ice water	25 knots
Xu et al (2018)	Spatiotemporal mapping of speed with sea ice extent	8 knots (inside Suez canal), 25 knots
Liu and Kronbak (2010)	12–13 knots during summer and 6–7 knots during winter	
Pruyn (2016)	11 knots (without ice-breaker) and 9 knots (with an ice-breaker)	14.3 knots
Shibasaki et al (2018)	6 -15 knots	18 knots
Cariou et al (2019), Olivier and Pierre (2016)	Speed from ice thickness–speed relationship	19 knots, 14.5 knots
Somanathan et al (2009)	Speed-ice numeral relationship	20 knots
Furuichi and Otsuka (2014)	14.1 knot for Summer, 12.8 knot for spring/winter	20 knots
Erikstad and Ehlers (2012)	12 knots	20 knots
Zhang et al (2016)	12 knots	16.47 (WB)/14.42 (EB)

Navigable Period and Types of Fuels

Study	Navigable Period	
Chang et al. (2015)	July - September	
Furuichi and Otsuka (2014)	105, 135, 165, 195, 225 days	
Ha and Seo (2014)	3 and 6 months, all year	
Lasserre (2014)	May - November (180 days)	
Liu and Kronbak (2010),	01 102 274 days	
Wang et al. (2018)	91, 182, 274 days	
Otsuka et al. (2013)	15th June - 30th November	
Shibasaki et al. (2018)	4, 6, 9 months, all year	
Xu et al. (2011)	September	
Xu et al. (2018)	Dynamic navigable window considering changes in sea ice extent	
V	Outer navigability window (August, October), inner window	
Yumashev et al. (2017)	(September)	
Zhang et al. (2016)	6 months (summer-autumn)	
Zhao et al. (2016)	4, 6, 8 months	

Fuel Types	No of Studies
Intermediate Fuel Oil (IFO 380/IFO 180)	10
Marine Gas Oil (MGO)	5
Heavy Fuel Oil (HFO)	4
Liquified Natural Gas (LNG)	3
Light Fuel Oil (LFO)	2
Do not specify the fuel type	8

Feasibility of Arctic Shipping

Feasibility	of Arctic Shipping	No of Studies
Feasible in general		8
	High fuel prices	5
	Long navigable period	4
	Certain vessel sizes	4
	Specific origins/destinations	4
	Sea-ice diminishes	4
Feasible	Low transit fees	3
only at	Certain fuel types	2
only at	With emission tax	2
	Certain sailing speed	1
	High load factor/ cargo volume	1
	Independent sailing without ice-breaker	1
	High global emission	1
	Short-haul	1
	Risk with difficult weather conditions and a short navigable period	5
	Limited navigation speed	5
	High cost of ice-class vessels	5
	Ice-breaking and transit fees	5
Not	Vessel size's restrictions on navigation paths	4
feasible	High emission per unit cargo	3
due to	Low load factor/ cargo volume	2
ave 10	Under-developed infrastructure	2
	Supply chain risk and uncertainty	2
	Political and legal aspects	2
	Impacts of cold temperature on cargo	1
	Differences in navigational practices	1

Common Limitations Highlighted From Studies

- ✓ Profitability sensitive to the cost parameters
- Excluded important stakeholders, trade volume changes and load factors
- ✓ Lack of attention towards engineering aspects in economic feasibility analysis
- ✓ Simplified assumptions on fuel consumption, speed, etc

- ✓ Exclude extra administrative and planning challengers for NSR/SCR combined service
- ✓ Barely consider reliability, just-in-time operations in liner shipping
- ✓ Ignore the loss of excluding significant markets (ex: Singapore, India)

Conclusions and Insights

Cost Factors	Market Factors	Risk Factors	Benefit Factors
 ✓ Additional cost for ice class vessels ✓ Fuel cost at vessel speed ✓ Emission tax ✓ Administrative cost on seasonal service ✓ Transit and ice-breaking fees ✓ Trade-off between fuel, operation, and capital costs 	 ✓ Economic growth from Arctic routes ✓ Through traffic/OD traffic/OD pairs ✓ Ports equipped to handle containers at rotations ✓ Expansion of Suez and Panama canals ✓ Limitations on economies of scale due to small vessels 	 ✓ Accurately predicting of ice freeze-up and breakup events ✓ Risk from icebergs and growlers ✓ Length of NSR varies with distribution of sea ice ✓ Impacts from vessel-based emission to the fragile Arctic sea environment 	 ✓ Increase no of round trips and reduce capital cost ✓ Slow-steaming and fuel savings ✓ Emission reduction ✓ Decrease of piracy risks ✓ New market and trade potential

Progress: Part 2

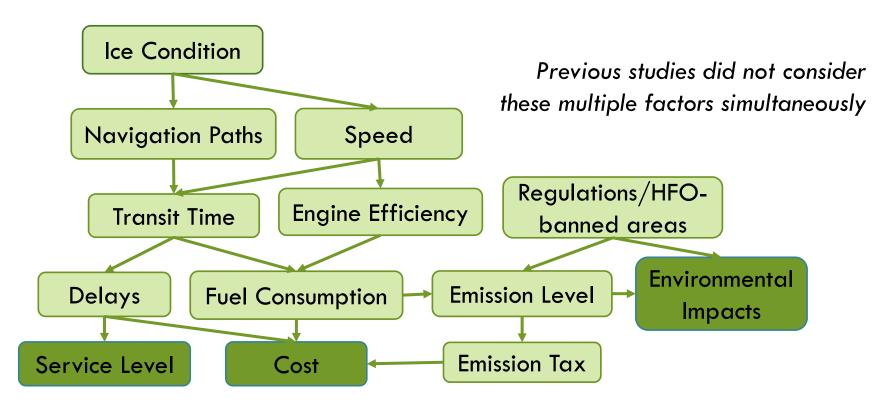
Environmental Sustainability of Arctic Shipping through Vessel Speed Optimization and HFO-banned Areas

Research Objectives:

- 1. Analyze the effectiveness of imposing HFO-banned areas along NSR, and the locations of HFO-banned areas
- Analyze the effectiveness of speed optimization when navigating via NSR

Focused Measurers on Vessel-based Emission Reduction

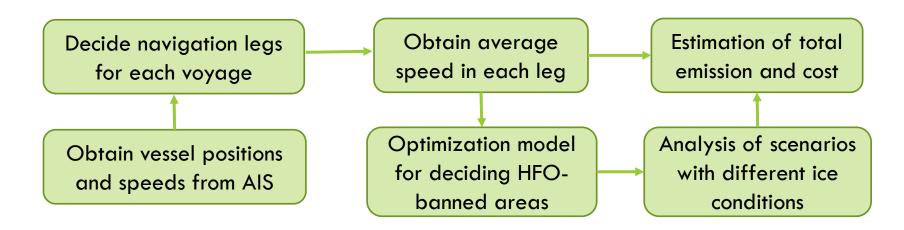
Measurers	Description	Implementation
Slow steaming	Reducing the navigation speed, which is a promising alternative due to the non-linear relationship between ship speed and fuel consumption	Voluntary/market-based measure
Speed optimization	Optimize speed to ensure service integrity and access to markets while minimizing operation cost, may not be the minimum speed	Voluntary/market-based measure
HFO-banned Areas	Enforcing HFO-banned areas so that vessels cannot use HFO inside these areas	Mandatory/regulatory option
Emission Tax	Enforcing tax for the emissions generated from vessels	Mandatory/regulatory option


Increase in NSR traffic can have various impacts to the fragile Arctic sea environment from vessel-based emissions

Analysis Framework

Optimum speed can have different interpretations;

- ■To minimize total voyage cost
- To ensures service integrity and access to markets


In Arctic routes, speed also depends on ice condition, weather, among others However, in a majority of studies, ship speed is considered as an input not as a decision variable

1. Analyze the effectiveness of imposing HFO-banned areas along NSR, and the locations of HFO-banned areas

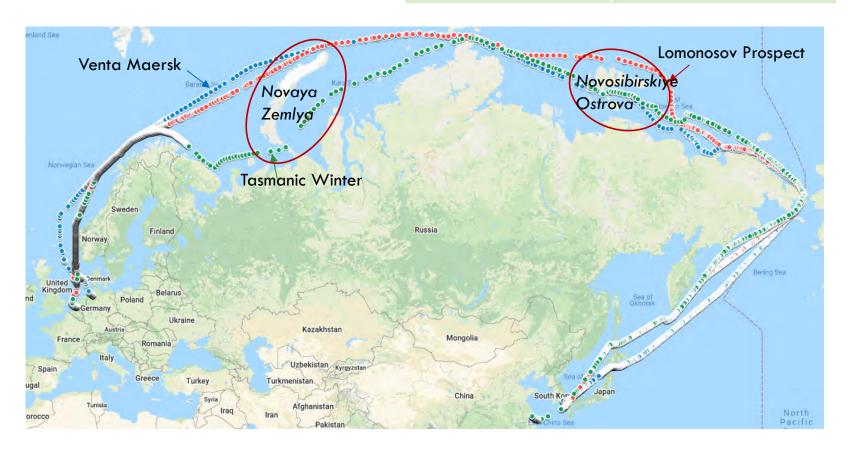
Assumptions and Work Flow

- Vessels navigates with its actual speeds given by AIS in the status quo
- □ Fuel switching occurs when navigating through HFO-banned areas from HFO to MGO
- Calculation of vessel-based emissions based on IMO GHGs study 2020
- Consider trip-specific HFO-banned areas due to the variation of speeds along the NSR with different vessel- and trip-specific characteristics

2. Analyze the effectiveness of speed optimization when navigating via NSR

Assumptions and Work Flow

- Cost functions and parameters of HFO-banned area selection are similarly applicable for speed optimization
- lacktriangle Maximum speed can be changed based on the vessel's position (leg l_n) at time t due to the ice thickness ($I_t^{l_n}$) of leg l_n at that time
- lacksquare Speed can be varied in between min and max speeds considering vessel's position (leg l_n) and the time of the year
- 1. Estimate the emissions and cost without speed optimization when navigating via NSR (with actual vessel transit data)
- 2. Estimate the emissions and cost with speed optimization when navigating via NSR and with enforced HFO-banned areas
 - 2.1 With the objective of minimizing total emission
 - 2.2 With the objective of minimizing cost
- 3. Optimum speed at different fuel prices and emission tax levels


Vessel-, Model- and Market-specific Parameters

Vessel-specific parameters	Model-specific Parameters	Market-specific Parameters
GT of vessel	Premium on vessel new building	Ice-Breaking cost per
Life time of vessel	price	Zone/GT (As a function of no
Ice class	Premium on operating cost	of zones which required ice- breaking service)
New building price	Emission Tax per CO2e (USD/T	F
Specific fuel oil consumption	CO2e)	Fuel Price HFO
Design speed	Fouling correction factor	Fuel Price MGO
Instantaneous speed		
Min/Max speeds	Speed-Power relationship	Exchange rate (USD/RUB)
Ref Power of the Main Engine	Weather correction factor	Emission types (CO2, CH4,
Reference and Instantaneous	Correction factor on speed-power relationship	N2O, BC, SOx)
draft		Firel based amission foretons
Engine load	Draft-Power relationship	Fuel-based emission factors
Aux Engine power output KW	Auc Engine usage as a % of total navigation time	Global warming potentials
Boilers Power KW	Boilers usage as a % of total	
Draft at a time	navigation time	Emission tax

Analysis Cases and Scenarios

- 3 representative routes with different vessels
- 3 different ice condition scenarios

Vessels	Ice condition scenarios
 Venta Maersk Tasmanic Winter Lomonosov Prospect 	 Free-ice Medium-ice Heavy-ice

Related Publications

<u>Refereed Journal Publications</u>

Kavirathna, C.A. and Shibasaki, R. (2021) Economic feasibility of Arctic shipping from multiple perspectives: a systematic review. Okhotsk Sea and Polar Oceans Research, 5: 15-22

<u>Currently Accepted as Full Papers for Forthcoming International Conferences</u>

- Kavirathna, C.A., Shibasaki, R., Wenyi D. and Otsuka, N. (2021) Environmental Sustainability of Arctic Shipping through Potential HFO-banned Areas along the NSR. 26th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Moscow, Russia
- Kavirathna, C.A., Shibasaki, R., Wenyi D. and Otsuka, N. (2021) Vessel speed optimization considering the environment and economic perspectives of Arctic Shipping, International Association of Maritime Economics (IAME), Rotterdam, Netherlands

Conference Presentations by Abstracts

Kavirathna, C.A. and Shibasaki, R. (2021) Trends and Perspectives on Arctic Shipping
 Potential from Scientific Research, Arctic Science Summit Week (ASSW), Portugal

Immediate Future Works

- □ Collect remaining data and improve the model incorporating both ice thickness and ice concentration
- Possibly analysis of HFO-banned areas considering all transit vessels simultaneous (model for policy-making) with their actual speeds
- Analyze all scenarios of speed optimization model with different ice-conditions and vessel specifications after making possible improvements to the model

References 38

Afenyo, M., F. Khan and 2 others (2017): Arctic shipping accident scenario analysis using Bayesian Network approach. Ocean Eng. 133, 224-230.

- Aksenov, Y., E.E. Popova and 5 others (2017): On the future navigability of Arctic sea routes: high-resolution projections of the Arctic ocean and sea ice. *Mar. Policy*. 75, 300–317.
- Bognar-Lahr, D (2020): In the Same Boat? A Comparative Analysis of the Approaches of Russia and Canada in the Negotiation of the IMO's Mandatory Polar Code. Ocean Dev. Int. Law. 51(2), 143-161.
- Bognar, D (2016): Russian Proposals on the Polar Code: Contributing to Common Rules or Furthering State Interests? *Arct. rev. law polit.* 7 (2), 111-135.
- Chang, K.Y., S.S. Hea and 3 others (2015): Route planning and cost analysis for travelling through the Arctic Northeast Passage using public 3D GIS. *Int. J. Geogr. Inf. Sci.*
- Cariou, P., A. Cheaitou., O. Faury and S. Hamdan (2019): The feasibility of Arctic container shipping: the economic and environmental impacts of ice thickness. *Marit Econ Logist*.
- Cariou, P. and O. Faury (2015): Relevance of the Northern Sea Route (NSR) for bulk shipping. *Transp. Res. Part A.* 78, 337–346.
- Ding, W., Y. Wang., L. Dai and H. Hu (2020): Does a carbon tax affect the feasibility of Arctic shipping?. *Transp. Res. Part D.* 80: 102257.
- Eguíluz, V., Fernández-Gracia, J. and 2 others (2016): A quantitative assessment of Arctic shipping in 2010–2014. Sci Rep. 6, 30682.
- Erikstad, S.O. and S. Ehlers (2012): Decision Support Framework for Exploiting Northern Sea Route Transport Opportunities. *Ship Technol. Res.* 59 (2).
- Faury, O. and P. Cariou (2016): The Northern Sea Route competitiveness for oil tankers. *Transp. Res. Part A.* 94, 461-469.
- Furuichi, M. and N. Otsuka (2014): Economic feasibility of finished vehicle and container transport by NSR/SCR-combined shipping between East Asia and Northwest Europe. *International Association of Maritime Economics*, July 15-18, Norfolk, VA, USA.
- Goerlandt, F., J. Montewka and 2 others (2017): An analysis of ship escort and convoy operations in ice conditions. Saf. Sci. 95, 198–209.
- Gritsenko, D. and T. Kiiski (2015): A review of Russian ice-breaking tariff policy on the northern sea route 1991–2014. *Polar Rec.* 52 (263), 144-158.
- Ha, Y.S. and J.S. Seo (2014): The Northern sea routes and Korea's trade with Europe: Implications for Korea's Shipping Industry. *Int. J. e-Navigation and Marit. Econ.* 1: 73-84.
- Hong, N. (2012): The melting Arctic and its impact on China's maritime transport. Res. *Transp. Econ.* 35(1), 50-57.

- Howell, S.E.L. and J.J. Yackel (2004): A vessel transit assessment of sea ice variability in the Western Arctic, 1969–2002: implications for ship navigation. Can. J. Remote Sensing, 30 (2), 205–215.
- Hu, J. and L. Zhou (2015): Experimental and numerical study on ice resistance for icebreaking vessels. *Int. J. Nav. Archit. Ocean Eng.* 7, 626~639.
- Kamesaki, K., S. Kishi and Y. Yamauchi (1999): Simulation of NSR shipping based on year round and seasonal operation scenarios. INSROP Working Paper No. 164.
- Konygin, A., S. Nekhaev and 4 others (2015): Oil tanker transportation in the Russian arctic. *Int. J. Sci. Technol. Res.* 4, 03.
- Lasserre, F (2014): Case studies of shipping along Arctic routes. Analysis and profitability perspectives for the container sector. *Transp. Res. Part A.* 66: 144–161.
- Lasserre, F. and S. Pelletier (2011): Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners' intentions. *J. Transp. Geogr.* 19, 1465-1473.
- Lee, S.W. and J.M. Song (2014): Economic possibilities of shipping though Northern Sea route. *Asian J. Shipping Logist.* 30 (3), 415-430.
- Lindstad, H., R.M. Bright and A.H. Strømman (2016): Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation. *Transp. Pol.* 45: 24-30.
- Liu, M and J. Kronbak (2010): The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. J. Transp. Geogr. 18, 434–444.
- Loptien, U. and L. Axell (2014): Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea. *The Cryosphere*. 8, 2409–2418.
- Meng, Q., Y. Zhang and M. Xu (2017): Viability of transarctic shipping routes: a literature review from the navigational and commercial perspectives. *Marit. Pol. Manage.* 44(1), 16-41.
- Moe, A. and L. Brigham (2017): Organization and Management Challenges of Russia's Icebreaker Fleet. Geogr. Rev. 107 (1), 48-68.
- Montewka, J., F. Goerlandt and 3 others (2019): Toward a hybrid model of ship performance in ice suitable for route planning purpose. *J. Risk and Reliability*. 233 (1), 18–34.
- Moon, D.S., D.J. Kim and E.K. Lee (2015): A Study on Competitiveness of Sea Transport by Comparing International Transport Routes between Korea and EU. Asian J. Shipping Logist. 31 (1), 001-020.
- Nam, J.H., I. Park and 4 others (2013): Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method. *Int. J. Naval Archit.* Ocean Eng. 5, 210-226.

References Cont....

- Otsuka, N., K. Izumiyama and M. Furuichi (2013): Study on Feasibility of the Northern Sea Route from Recent Voyages. 22nd International Conference on Port and Ocean Engineering under Arctic Conditions. June 9-13, Espoo, Finland.
- Overland, J.E. and M. Wang (2007): Future regional Arctic sea ice declines. Geophys. Res. Lett. 34, L17705.
- Patey, M. and K. Riska (1999): Simulation of Ship Transit Through Ice, INSROP Working Paper No.155.
- Pruyn, J.F.J (2016): Will the Northern Sea Route ever be a viable alternative?. Marit. Pol. Manage. 43(6), 661-675.
- Rahman, N.S.F.A., A.H. Saharuddin and R. Rasdia (2014): Effect of the Northern Sea Route Opening to the Shipping Activities at Malacca Straits. *Int. J. e-Navigation and Marit. Econ.* 1, 85-98.
- Sevastyanov, S. and A. Kravchuk (2020): Russia's policy to develop trans-arctic shipping along the Northern sea route. *The Polar Journal*.
- Shibasaki, R., T. Usami and 3 others (2018): How do the new shipping routes affect Asian liquefied natural gas markets and economy? Case of the Northern Sea Route and Panama Canal expansion. *Marit. Pol. Manage*.
- Solakivi, T., T. Kiiski and L. Ojala (2019): On the cost of ice: estimating the premium of Ice Class container vessels. *Marit Econ Logist*. 21, 207–222.
- Solski, J.J., T. Henriksen and A. Vylegzhanin (2020): Introduction: regulating shipping in Russian Arctic Waters: between international law, national interests and geopolitics. *The Polar Journal*.
- Somanathan, S., P. Flynn and J. Szymanski (2009): The Northwest Passage: A simulation. *Transp. Res. Part A.* 43, 127–135.
- Spencer, D. and S.J. Jones (2001): Model-Scale/Full-Scale Correlation in Open Water and Ice for Canadian Coast Guard "R-Class" Icebreakers. J. Ship Res. 45 (4), 249–261.
- Stephenson, S.R., L.C. Smith and 2 others (2013): Projected 21st-century changes to Arctic marine access. *Clim. Change.* 118, 885–899.
- Sur, J. M. and D.J. Kim (2020): Multi criteria evaluation of beneficial effect of commercializing Northern Sea Route on Europe and Asia countries. Asian J. Shipping Logist.
- Theocharis, D., S. Pettit and 2 others (2018): Arctic shipping: A systematic literature review of comparative studies. J. Transp. Geogr. 69, 112-128.
- Theocharis, D., V.S. Rodrigues., P. Stephen and J. Haider (2019): Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market. *Transp. Res. Part E.* 129: 111–135.
- Tseng, P. and N. Pilcher (2017): Assessing the shipping in the Northern Sea Route: a qualitative approach. *Marit. Bus. Rev.* 2 (4), 389-409.

- Tseng, P. and K. Cullinane (2018): Key criteria influencing the choice of Arctic shipping: a fuzzy analytic hierarchy process model. *Marit. Pol. Manage.* 45(4), 422-438.
- Wang, C., X. Hu and 3 others (2020): Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model. *Int. J. Naval Archit.* Ocean *Eng.* 12, 414-427.
- Wang, Y., R. Zhang and 2 others (2018): Investigating the effect of Arctic sea routes on the global maritime container transport system via a generalized Nash equilibrium model. *Polar Research*. 37(1), 1547042.
- Wang, H., Y. Zhang and Q. Meng (2018): How will the opening of the Northern Sea Route influence the Suez Canal Route? An empirical analysis with discrete choice models. *Transp. Res. Part A*, 107, 75-89.
- Wang, Z., J.A. Silberman and J.J. Corbett (2020): Container vessels diversion pattern to trans-Arctic shipping routes and GHG emission abatement potential. *Marit. Pol. Manage*.
- Wang, D., D. Li and 4 others (2019): Development situation and future demand for the ports along the Northern Sea Route, Res. Transp. Bus. Manag. 33.
- Xu, H., Z. Yin and 3 others (2011): The potential seasonal alternative of Asia— Europe container service via Northern sea route under the Arctic sea ice retreat. *Marit. Pol. Manage.* 38:5, 541-560.
- Xu, H., D. Yang and J. Weng (2018): Economic feasibility of an NSR/SCR-combined container service on the Asia-Europe lane: a new approach dynamically considering sea ice extent. *Marit. Pol. Manage.*. 45(4), 514-529.
- Yumashev, D., K.V. Hussen and 2 others (2017): Towards a balanced view of Arctic shipping: estimating economic impacts of emissions from increased traffic on the Northern Sea Route. *Climatic Change*. 143, 143–155.
- Zeng, Q., L. Tingyu and 3 others (2020): The Competitiveness of Arctic Shipping over Suez Canal and China-Europe Railway. *Transp. Pol.*
- Zhang, Y., Q. Meng. and S.H. Ng (2016): Shipping efficiency comparison between Northern Sea Route and the conventional Asia-Europe shipping route via Suez Canal. *J. Transp. Geogr.* 57, 241–249.
- Zhao, H., H. Hua and Y. Lin (2016): Study on China-EU container shipping network in the context of Northern Sea Route. *J. Transp. Geogr.* 53, 50–60.
- Zhang, Z., D. Huisingh and M. Song (2018): Exploitation of trans-Arctic maritime transportation. *J. Clean. Prod.* 212, 960-973.