スヴァールバル諸島ニーオルスンにおける酸素/窒素比および大気ポテンシャル酸素の 高精度連続観測

後藤大輔¹、森本真司²、青木周司²、Prabir K. Patra³、中澤高清² ¹ 国立極地研究所 ² 東北大学大学院理学研究科 ³ 海洋開発研究機構

High-precision continuous measurements of the atmospheric oxygen/nitrogen ratio and atmospheric potential oxygen at Ny-Ålesund, Svalbard

Daisuke Goto¹, Shinji Morimoto², Shuji Aoki², Prabir K. Patra³ and Takakiyo Nakazawa² ¹National Institute of Polar Research ²Graduate School of Science, Tohoku University ³Japan Agency for Marine-Earth Science and Technology

Simultaneous observations of atmospheric O_2 (defined as O_2/N_2 ratio) and CO_2 concentrations provide valuable information for understanding the global carbon cycle. Atmospheric Potential Oxygen (APO) defined as APO= $O_2+1.1 \times CO_2$ (O_2 and CO_2 represent the O_2/N_2 ratio and the CO_2 concentration, respectively), which is conservative for land biospheric activities but variable by ocean-atmosphere O_2 exchange, can also be used to evaluate the air-sea O_2 flux. Therefore, several laboratories have developed precise measurement systems for the O_2/N_2 ratio and carried out systematic observations since the early 1990s. To elucidate the role of the Arctic region in the global carbon cycle in terms of atmospheric O_2 , we developed a continuous measurement system using a differential fuel-cell O_2 analyzer, and initiated systematic observation at Ny-Ålesund (78°55'N, 11°56'E), Svalbard in November 2012 for the first continuous operation in the Arctic region. We report the results obtained from the first two years of measurement.

The O_2/N_2 ratio observed at Ny-Ålesund shows a clear seasonal cycle with peak-to-peak amplitude of about 140 per meg, which reaches a minimum in late March to early April and a maximum in August. The CO₂ concentration also varies seasonally, showing the amplitude of 17 ppm, but the phase is opposite to the O_2/N_2 ratio. APO shows the clear seasonal cycle similar to the O_2/N_2 ratio, and the amplitude is 55 per meg. In addition to the seasonal cycle, short-term variations on a timescale of several hours to several days are clearly observed. In spring and early summer, the O₂/N₂ ratio shows irregular fluctuations with the amplitude of 30-70 per meg (approximately corresponding to 6-15 ppm in mole fraction). Similar fluctuations are also found for the CO_2 concentration, but the phase is opposite to the O_2/N_2 ratio, and their amplitudes are 5 ppm at most. Irregular fluctuations of APO indicate the amplitude to be 20-50 per meg. From the comparison of backward trajectories of air parcels, as well as of the results of the tagged-tracer experiments using an atmospheric transport model, with the distribution of marine biological net primary production (NPP), it is suggested that such fluctuations of APO are closely related to O₂ emissions due to marine biological activities in the Norwegian Sea, the Greenland Sea and/or the Barents Sea. Sea-to-air O₂ flux is roughly estimated to be 1.4×10⁵ µmol m⁻² day⁻¹ based on a fluctuation event of APO observed on June 17–19, 2013. The net community production (NCP) expected from the estimated O₂ flux is estimated to be 1.2×10^3 mgC m⁻² day⁻¹, which is in good agreement with satellite-derived NPP within an order of magnitude. This suggests that in-situ continuous observation of APO at Ny-Ålesund is useful for estimating NCP and/or for validating the satellite-derived NPP data.

Acknowledgements

We are grateful to the Norwegian Polar Institute's staff for their help in our measurements at Ny-Ålesund.