Atmospheric CH₄ distributions observed during Arctic cruises of R/V Mirai in 2012-2015

Y. Tohjima¹, K. Katsumata¹, J. Matsushita², D. Sasano³, N. Kosugi³, S. Kameyama⁴, S. Ishidoya⁵, K. Ishijima⁶ and P. Patra⁶

¹National Institute for Environmental Studies, Tsukuba, Japan

²National Institute of Polar Research, Tachikawa, Japan

³Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

⁴Hokkaido Univ., Sapporo, Japan

⁵National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

⁶Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Several researches pointed out the concern that methane emissions in the Arctic region would increase in near future due to global warming. To investigate the CH₄ potential sources in the Arctic region, continuous measurements of the atmospheric CH₄ were conducted onboard a R/V Mirai during 4 Arctic cruises: MR12-E03 (Sep. 3-Oct. 17, 2012), MR13-06 (Aug. 28-Oct. 17, 2013), MR14-05 (Aug. 31-Oct.10, 2014), MR15-03(Aug. 23-Oct. 5, 2015). The onboard measurements of the atmospheric CH₄, carbon dioxide (CO₂) and carbon monoxide (CO) were carried out by using a cavity ring-down spectroscopy (CRDS) analyzer (Picarro, G2401). The estimated analytical precisions were about 0.02 ppm (CO₂), 0.3 ppb (CH₄), and 1 ppb (CO) for the 5-min averages when the CRDS analyzer was in good condition. However, the precisions were considerably worse for CO during MR13-06 cruise, CO₂ and CO during MR15-03 cruise, and CH₄ during the latter half of the MR15-03 cruise because of malfunctions of the CRDS analyzer. It should be noted that the CO₂ and CO mixing ratios were sometimes contaminated by the own exhaust fumes while there was no significant influence from the exhaust fumes on the CH₄ mixing ratio. Such pollution events are easily distinguishable by the characteristics of the relative wind direction, the tight correlation of CO vs. CO₂, and large short-term (~a few second) variability of CO₂.

From these Arctic cruises, distribution of the atmospheric CH_4 in the Bering Sea, the Chukchi Sea, and the Canada Basin of the Arctic Ocean in September were mainly observed. For the individual cruises, relatively elevated CH_4 mixing ratios of several tens ppb were observed in the Bering Strait, Chukchi Sea, and off the northern Alaskan coast (Fig. 1). Since these elevated CH_4 peaks were generally associated with similar CO_2 peaks but not with CO peaks, it's unlikely that the ocean or combustion processes were the sources of the elevated CH_4 . To examine the relationship between the CH_4 variations and the air mass transport, 3-day backward trajectories along the cruise tracks are computed by using the METEX (METeorological data Explorer, <u>http://db.cger.nies.go.jp/metex/</u>) developed by Zeng et al. (2003). The backward trajectory analysis suggests that the elevated CH_4 are associated with the air mass transport from Alaska or East Siberia, especially North Slope of Alaska (Fig. 2). Simulated CH_4 variations based on an atmospheric transport model and reported CH_4 flux map well capture the observed CH_4 variations, also suggesting that the most of elevated CH_4 were derived from the land sources. However, the amplitudes of the elevations are not necessarily reproduced well. These results suggest that the observed CH_4 spatiotemporal variations could be used to improve the CH_4 emissions from the Arctic regions.

(qad 85 192 HO î 80 Latitude (deg. 6 5 70 -- 9/6 9/7 9/8 65 9/9 60 150 160 170 180 200 210 190 Longitude (deg. E)

Fig. 1. CH₄ distribution along the track of the MR14-05 cruise.

Fig. 2. 3-day backward trajectories along the cruise track for 4-day period during the MR14-05 Arctic cruise. Inserted figure shows time series of CH₄ mixing ratio.

References

Zeng, J., Y. Tohjima, Y. Fujinuma, H. Mukai, and M. Katsumoto, A study of trajectory quality using methane measurements from Hateruma Island, Atmos. Environ., 37, 1911-1919, 2003.