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The Ti-in-quartz thermometers (Wark & Watson 2006; Kawasaki

& Osanai 2008) were based on the thermodynamic property of

quartz that the solubility of TiO2 increases with temperature.

Fig. 1 Back scattered electron image
(BSEI) of a run product (no. 090909E)
synthesized quartz (dark) and rutile
(bright) from glass at 15 kbar and 800
°C for 3764 hours in the Pt capsule.
White bar, 10µm.

We propose the

new thermobarom-

eter for ultrahigh-

temperature gran-

ulites calibrated

from the experi-

mentally reversed

data. We employed

the three types

starting materials:

(1) mineral mix-

ture of rutile and

quartz saturated in

TiO2; (2) glass;

and: (3) mixture

of rutile and TiO2-

free silica mineral.

The Ti would substitute for the tetrahedral Si in quartz:
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We apply the infinite dilute solution model (Henry’s law) to TiO2

component in quartz in equilibrium with rutile. The TiO2 con-

tent of quartz,XQtz
TiO2

, is given by the following Arrhenius-type

equation:
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, P, T andR are changes

of enthalpy, entropy and volume at the standard state of interest,

the Henry’s coefficient, pressure, temperature and gas constant,

respectively (Kawasaki & Osanai 2008)．
We conducted the reversal experiments under the pressures

from atmospheric pressure to 2 GPa and temperatures from 800

to 1500 °C using the electric furnace and piston-cylinder appa-

ratus at Ehime University. Durations were 4−3764 hours. Tem-

perature was calibrated by the melting point of gold at 1064.18

°C and was measured by the use of a Pt/Pt-13%Rh thermocouple

placed at the top of the sample space and at the outer side in con-

tact with the reaction tube in the furnace. The run temperature

was controlled by the measurement of the outer-side tempera-

ture of the reaction tube, and was kept constant within±1 °C of

the nominal values. Pressures in the piston-cylinder apparatus

were calibrated by the phase transformation of Bi I–II at room

temperature (2.55 GPa; Hall, 1971) and by the quartz-coesite

transition at 1000 °C (2.94 GPa; Bohlen & Boettcher, 1982).

Fig. 2 Experimental results at 15 kbar and previous works
(Wark & Watson 2006; Kawasaki & Osanai 2008).

　
　
　
　One of the run products are shown in Fig. 1. Experimental re-

sults are compiled in Fig. 2 comparing the previous works (Wark

& Watson 2006; Kawasaki & Osanai 2008). From the present

experiments we obtain the pressure-temperature dependence of

the solubility of TiO2 in quartz:

RT lnXQtz
TiO2

= −8504(733)−4.975(480)T

−39.7(167)P (4)

whereXQtz
TiO2

is the mole fraction of TiO2, or the number of Ti

atoms per formula unit based on a two-oxygen atom normaliza-

tion. Pressure and temperature are given in kbar and Kelvin.

This equation is very powerful to evaluate the metamorphic tem-

peratures for ultrahigh-temperature granulites. The metamor-

phic temperatures evaluated by the present thermometer are in

good agreement with those obtained by the empirical thermome-

ter. The previous Ti-in-quartz thermometer gives about 200 °C

higher temperatures than those estimated by the present and em-

pirical thermometers, potentially because of underestimates and

erroneous thermodynamic treatments of Ti solubility in quartz in

the previous calibration.
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