In order to better understand the spatial distribution of subglacial environments, ground-based radar profiling data were analyzed for a total distance of ~3300 km across Dronning Maud Land, East Antarctica. The relationship between geometrically corrected bed returned power $[P_{\text{bed}}]_{\text{dB}}$ in decibels and ice thickness H was examined. When H is smaller than a critical value that varies according to location, $[P_{\text{bed}}]_{\text{dB}}$ tends to decrease relatively smoothly with increasing H, which is explicable primarily by the cumulative effect of dielectric attenuation within the ice. However, at locations where H is larger than the critical H values, anomalous increases and fluctuations in $[P_{\text{bed}}]_{\text{dB}}$ were observed, regardless of the choice of radar frequency or radarpulse width. In addition, the amplitude of the fluctuations often range 10-20 dB. We argue that the anomalous increases are caused by higher bed reflectivity associated with the existence of subglacial water. We used these features to delineate frozen and temperate beds. Approximately two-thirds of the investigated area was found to have a temperate bed. The beds of the inland part of the ice sheet tend to be temperate, with the exception of subglacial high mountains. In contrast, the beds of coastal areas tend to be frozen, with the exception of fast-flowing ice on the subglacial lowland or troughs. We argue that this new analytical method can be applied to other regions. We also found that a 20-km-wide bed in the subglacial high mountains of an inland plateau near Dome Fuji is frozen, suggesting the existence of very old ice above the bed.

References