高度好冷菌 Colwellia psychrerythraea strain 34H の脂肪酸

橋本美佳子¹、折笠善丈²、吉田磨仁¹、林秀則³、奥山英登志¹ 1 北海道大、² 帯広畜産大、³ 愛媛大

Fatty acids of the extremely psychrophilic bacterium Colwellia psychrerythraea strain 34H

Mikako Hashimoto¹, Yoshitake Orikasa², Kiyohito Yoshida¹, Hidenori Hayashi³, and Hidetosi Okuyama¹

¹Hokkaido University, ²Obihiro University of Agriculture and Veterinary Medicine, ³Ehime University

The marine bacterium *Colwellia psychrerythraea* strain 34H (strain 34H; ATCC BAA-681) is an extreme psychrophile isolated from the near-freezing sediments of the Northeast Water polynya, Greenland¹⁾. This bacterium has been used as a psychrophilic model organism because of its optimal growth temperature at 8°C¹⁾, mobility using flagella even at subzero temperatures²⁾, and significant production of various types of cold-active extracellular enzymes^{1,3)}. Industrial use of strain 34H is also expected. This bacterium has been considered to contain eicosapentaenoic (EPA) and/or docosahexaenoic acids (DHA) from the existence of *pfaA-pfaE* genes responsible for the biosynthesis of these long-chain polyunsaturated fatty acids (LC-PUFAs) from its genome sequence⁴⁾. These fatty acids have been regarded as a modulator of membrane fluidity at low temperatures also in this bacterium. However, no biochemical evidence on their presence has been available⁵⁾. In this study, we identified LC-PUFAs including DHA and EPA as very minor fatty acid components of strain 34H cells grown at 5°C and the sum of *cis*-monounsaturated fatty acids including palmitoleic acid was more than 50% of total fatty acids, suggesting that *cis*-monounsaturated fatty acids would serve a principal role adjusting the membrane fluidity at low temperatures in this bacterium.

Colwellia psychrerythraea strain 34H (strain 34H; ATCC BAA-681) はグリーランド近海のポリニヤの海底堆積物から単離された細菌である 10 。その増殖至適温度は 80 C にあり 10 ,氷点下でも鞭毛運動を示す 20 など、高度な好冷性をもつほか、各種の低温性菌体外酵素を生産すること 1,30 から工業的な利用も期待されている。Strain 34H のゲノム配列は 2005 年に解読された 40 が、その遺伝情報からもこの菌の好冷的な性質が裏付けられている。Strain 34H はそのゲノムに長鎖多価不飽和脂肪酸(LC-PUFA)合成に関わる遺伝子群(pfaA-pfaE)をもつ 40 ことから、LC-PUFA を合成するとみられてきたが、生化学的な証明はなかった 50 。本研究では、strain 34H の脂肪酸成分を解析した。LC-PUFA としてドコサヘキサエン酸、エイコサペンタエン酸、アラキドン酸が検出されたが、その含量は何れも著しく低かった。一方で、パルミトオレイン酸を含むモノ不飽和脂肪酸の含量は合わせて 500 以上であった。以上の結果から strain 34H の低温下での膜流動性は LC-PUFA ではなく、シス型のモノ不飽和脂肪酸によって維持されていると考えられる。

References

- 1) Huston, A.L., Bacterial adaptation to the cold: in situ activities of extracellular enzymes in the North Water polynya and characterization of a cold-active aminopeptidase from *Colwellia psychrerythraea* strain 34H. Ph.D. thesis, University of Washington, Seattle, 2003.
- 2) Junge K. et al., Motility of *Colwellia psychrerythraea* strain 34H at subzero temperatures. Appl. Environ. Microbiol., 69, 4282–4284, 2003.
- 3) Huston A.L. et al., Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile *Colwellia psychrerythraea* strain 34H. Appl. Environ. Microbiol., 70, 3321–3328, 2004.
- 4) Methé, B.A. et al., The psychrophilic lifestyle as revealed by the genome sequence of *Colwellia psychrerythraea* 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. U.S.A., 102, 1091310918, 2005.
- 5) Okuyama, H. et al., Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl. Environ. Microbiol., 73, 3665–3670, 2007.