東向きに拡大するオーロラサージの3次元構造

田中良昌¹、小川泰信¹、門倉昭¹、Noora Partamies²、Daniel Whiter³、Carl-fredrik Enell⁴、Björn Gustavsson⁵、 Urban Brändström⁶、Tima Sergienko⁶、Alexander Kozlovsky⁷、宮岡宏¹

1 国立極地研究所
2 フィンランド気象研究所
3 サウサンプトン大学
⁴EISCAT 科学協会
⁵ トロムソ大学
⁶ スウェーデン宇宙物理研究所
⁷ ソダンキュラ地球物理観測所

3D structure of eastward expanding auroral surges

Yoshimasa Tanaka¹, Yasunobu Ogawa¹, Akira Kadokura¹, Noora Partamies², Daniel Whiter³, Carl-fredrik Enell⁴, Björn Gustavsson⁵, Urban Brändström⁶, Tima Sergienko⁶, Alexander Kozlovsky⁷, and Hiroshi Miyaoka¹

¹ National Institute of Polar Research
²The University Centre in Svalbard, Norway
³University of Southampton, UK
⁴EISCAT Scientific Association
⁵University of Tromsø, Norway
⁶Swedish Institute of Space Physics, Sweden
⁷Sodankylä Geophysical Observatory, Finland

We present 3D spatial structure of three eastward expanding auroral surges (EEASs) observed on March 9, 2013. We conducted a campaign of auroral observations in northern Scandinavia using multiple imagers and the European Incoherent Scatter (EISCAT) radar from March 5 to March 9, 2013. Three EEASs were observed intermittently at about 15-minute intervals in the post-midnight sector (01:55-02:40 MLT) by monochromatic (428nm) all-sky EMCCD imagers at Tromsø (69.6 °N, 19.2°E), Norway, Kilpisjärvi (69.0°N, 20.9°E), Finland, and Abisko (68.4°N, 18.8°E), Sweden, with an exposure time of about 2 seconds and an sampling interval of about 10 seconds. We applied the auroral computed tomography (ACT) method to the auroral images to reconstruct 3D structure of the EEASs. With a traditional model for electron auroral emission (Rees, 1989), energy distribution of precipitating electrons was further derived from altitude profile of auroral emission. The main results are as follows:

(1) Altitude of maximum emission was temporally stable and confined to a narrow range between 96 km and 114 km.

(2) Averaged energy of precipitating electrons was mostly distributed between 2 keV and 7 keV with a maximum at 4 keV.

(3) The averaged energy increases with increasing total energy flux of precipitating electrons.

(4) Correlation between the averaged energy and width of discrete arc was low.

As for item (3), the relation between the averaged energy and total energy flux may be consistent with a theory in which electrons are accelerated by a field-aligned potential difference (Morishima et al., 1993). On the other hand, the correlation between the averaged energy and the width of discrete arc was not clear (item (4)), because the averaged energy showed a strong dependence on the location of discrete arc, which may be explained by artifacts that appear at the edge of images. We perform numerical simulation to check if these results are due to the analysis technique.

References

Rees, M. H. (1989), Physics and chemistry of the upper atmosphere, Cambridge University Press, edited by J. T. Houghton, M. J. Rycroft, A. J. Dessler, New York.

Morishima, K., T. Ono, and K. Hayashi (1993), Nankyoku Shiryo (Antarctic Record), Vol.37, No.3, 205-230.