カナダ・チャーチルにおける炭素・水素同位体比の観測から推定された 大気中 CH₄濃度変動に対する北方湿地の寄与

藤田遼¹、森本真司¹、梅澤拓²、石島健太郎³、Prabir K. Patra^{1,3}、Douglas E. J. Worthy⁴、 後藤大輔⁵、青木周司¹、中澤高清¹

> ¹ 東北大学大学院理学研究科大気海洋変動観測研究センター ² 国立環境研究所 ³ 海洋研究開発機構 ⁴Environment Canada ⁵ 国立極地研究所

Contributions of regional boreal wetlands to atmospheric CH₄ variations at Churchill (Canada)

estimated from carbon and hydrogen isotope measurements

R. Fujita^{1*}, S. Morimoto¹, T. Umezawa², K. Ishijima³, P. K. Patra¹³,

D. E. J. Worthy⁴, D. Goto⁵, S. Aoki¹ and T. Nakazawa¹ ¹Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan ²National Institute for Environmental Studies, Tsukuba, Japan ³Research Institute for Global Change, JAMSTEC, Yokohama, Japan ⁴Environment Canada, Toronto, Ontario, Canada ⁵National Institute of Polar Research, Tokyo, Japan

We conducted flask-based measurements of concentration, δ^{13} C, δ D of atmospheric CH₄ at Churchill, Canada (CHL; 58°44'N, 93°50'W) and Ny-Ålesund, Svalbard (NAL; 78°55'N, 11°56'E) during 2007-2014; CHL locates on the northern perimeter of the Hudson Bay Lowland (HBL); NAL is a background station remote from regional CH₄ sources. The CH₄ concentration at CHL is generally higher than that at NAL, while δ^{13} C and δ D at CHL are lower than those at NAL, likely reflecting CH₄ emissions from regional to local boreal wetlands in nearby area of CHL. Clear seasonal cycles are observed in CH₄ and δ^{13} C with the respective seasonal maximum (minimum) values in January-February (June) and May (October). \deltaD also shows a clear seasonal cycle, but it is not the case for CH₄ and δ^{13} C, which exhibit large weekly-monthly variability. The summertime minimum of CH₄ concentration and maxima of δ^{13} C and δ D at CHL are about 1 month earlier than those at NAL. A simple 1box model indicates that contribution of biogenic CH4 emissions peaks earlier at CHL than at NAL, causing the phase differences between the two sites. At CHL, short-term CH₄ variations are observed through the year but most pronounced in summer. By inspecting the relationships between CH₄ concentration and the isotope ratios, we estimated the source isotope signatures to be $-63.4\pm2.8\%$ for δ^{13} C and $-316\pm24\%$ for δ D in summer (May–October), and $-47.7\pm4.5\%$ for δ^{13} C and $-244\pm52\%$ for δD in winter (November–April). These values indicate predominant contribution of wetlands emissions to CH₄ in summer and that of fossil fuel sources in winter. In addition, we use an atmospheric chemistry transport model at 1.12×1.12° horizontal resolution to investigate the cause of seasonal and short-term CH₄ variations at the two sites. While the model reproduces the CH_4 concentration variations at NAL well, it overestimates summertime CH_4 level at CHL. Tagged tracer experiments imply that the highly elevated CH₄ concentrations come from emissions in boreal northern America, suggesting that our a-priori wetland flux in the region might be overestimated.